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Coatings of orthopedic implants are investigated to improve
the osteoinductive and osteoconductive properties of the
implant surfaces and thus to enhance periimplant bone
formation. By applying coatings that mimic the extracellular
matrix a favorable environment for osteoblasts, osteoclasts
and their progenitor cells is provided to promote early and
strong fixation of implants. It is known that the early bone
ongrowth increases primary implant fixation and reduces the
risk of implant failure. This review presents an overview of
coating titanium and hydroxyapatite implants with compo-
nents of the extracellular matrix like collagen type I,
chondroitin sulfate and RGD peptide in different small and
large animal models. The influence of these components on
cells, the inflammation process, new bone formation and
bone/implant contact is summarized.

Introduction

Bone healing is a highly complex process which is conventionally
divided into three overlapping steps: (1) inflammation, (2) repair
and (3) bone remodeling. Each of them is characterized by a
specific set of cellular and molecular events.1-3 Bleeding at the
fracture site results in the development of a local hematoma.
Inflammatory cells like granulocytes, macrophages, monocytes
and lymphocytes infiltrate the hematoma and secrete cytokines
and growth factors.1,2 Chemotactic effects induce further
recruitment of inflammatory and mesenchymal cells, stimulation
of angiogenesis and extracellular matrix synthesis.4,5 Over time the
hematoma is reorganized in granulation tissue.6,7 Chondrocytes
derived from mesenchymal progenitors and fibroblasts produce
osteoid which is subsequently mineralized and form a soft callus
between the fragments.6 In the next step, soft callus is gradually
removed and replaced by mineralized bone matrix. The newly
formed woven bone is called hard callus, is typically irregular and
needs to be remodeled.7 This repair stage represents the most

active period of osteogenesis with high levels of osteoblast activity.
In the remodeling phase the woven bone is transformed into
lamellar bone with the trabeculae being formed along the pressure
trajectories. The most active cells during remodeling are
osteoclasts which demineralize the matrix and degrade the organic
components by proteinases.7,8 New bone is laid down in its shape,
structure and mechanical strength by osteoblasts.7

In summary, the first 1 to 2 weeks, in which inflammation and
revascularization occur, seem to be most critical for fracture
healing.6,9 An early formation of granulation tissue could support
the differentiation of mesenchymal cells into osteoblasts and thus
provide a better requisite for bone remodeling.

Coating of orthopedic implants aims at improved bone/implant
contact (BIC), reduction of implant loosening and adverse
reactions. Since the host response to surgical implants is mediated
by regulatory interactions between the cells and the organic
extracellular matrix,10-12 coating with components of the extra-
cellular bone matrix (ECM) appears attractive to enhance bone
healing around metallic and hydroxyapatite (HA) implants.
Thereby, the ECM is not only a passive scaffold for cells.
Several components of the ECM like collagen type I (Coll),
chondroitin sulfate (CS) or RGD peptide containing proteins are
able to bind cytokines and growth factors12,13 and can interact
with bone cells via integrins or other specific cell surface
receptors14 thus directly or indirectly influencing migration and
cell adhesion as well as proliferation and differentiation of these
cells.15,16

Osseointegration is influenced by the primary stability
(mechanical stability) and secondary stability (biological stability
after bone remodeling) of the implant in the bone. Thereby early
bone formation and apposition is essential for secondary
stability.17 In this review the promotion of early bone formation
by components of the ECM is described.

Collagen Type I on Ti and HA Implants

Collagen type I is the major structural protein in bone. Coating
with Coll enhanced in vitro adhesion, migration and differentia-
tion of osteoblasts on Ti disks.18,19 Furthermore, the osteocon-
ductive properties of Coll in cancellous and cortical bone are well
documented.20-22
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Coating of Ti pins with Coll showed that the cellular reaction
on the implants appeared more intense around the Coll-coated
implants in the early stages of bone healing in a rat tibia model
compared with uncoated pins.23,24 At four days after implantation
reparative granulation tissue was seen around the Coll-coated

implants with 70% of the surface being surrounded by loose
granulation tissue. Cathepsin D, osteopontin and osteonectin-
positive cells were detected earlier and in higher number around
Ti/Coll pins compared with Ti pins (Fig. 1). Cathepsin D is an
important marker for cells of the monocyte/macrophage lineage
and is known to play a role in bone remodeling under both
physiological and pathological conditions.25 Osteopontin and
osteonectin are non-collagenous proteins of the ECM. They are
produced by osteoblasts and osteocytes and are involved in
fracture healing.26-28 The early appearance of these proteins
around Coll-coated Ti pins indicated an earlier onset of the bone
remodeling process compared with uncoated Ti pins. After
28 days both coated and uncoated implants were surrounded to a
great extent by newly formed lamellar bone with small parts of
dense fibrous tissue connecting the distinct bone lamellae. The
bone was in close contact with the implants without intervening
fibrous tissue (Fig. 2B and C). Both the direct BIC and the
amount of newly formed bone were greater in Coll-coated
implants compared with uncoated implants without reaching
statistical significance.23

In a sheep tibia model, coating of Ti implants with Coll under
loaded conditions (external fixator pins) was investigated
(Fig. 3).29 The extraction torque of the external fixation pins
was not altered by the Coll-coating after 6 weeks of implantation.
However, the apparent new bone formation and significantly
increased activity of osteoblasts around the external fixator pins

Figure 1. Average cell counts stained against cathepsin D around Ti
implants in the rat tibia per lower power field. Cells were counted in
three subsequent slices per animal. Statistical significance between Coll-
coated and uncoated Ti implants were found as indicated across the bar.
The earlier observation of cathepsin D-positive cells at the interface
around Coll-coated Ti implants suggest an earlier onset of the bone
remodeling process and an earlier decrease of the inflammatory
response to the implant compared with uncoated implants.23

Figure 2. (A) Lateral radiograph of a rat tibia with the Ti implant in situ. (B and C) Undecalcified sections of the bone/implant interface at 28 d after
implantation (original magnification � 10) of uncoated (B) and Coll-coated (C) implants. Goldner staining showed slightly more bone contact and thicker
bone layer around Coll-coated implants. Around uncoated implants small parts of dense fibrous tissue were seen (*). (D and E) Microcomputed
tomographs (SRmCT) of the metaphyseal section of the rat tibia inserted with uncoated (D) and Coll-coated (E) pins. The pins are piled of digitally,
mineralized bone appears gray. No image artifacts were observed because of the use of synchrotron radiation.23 BIC, bone/implant contact.
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suggested increased bone remodeling around the Coll-coated
implants. All data indicated that the faster remodeling by Coll-
coating affects primarily the earlier stages of bone healing without
altering mechanical stability.29

The favorable in vivo results of coating Ti implants with
collagen type I were confirmed by other groups. In the dog
mandible a significantly increased peri-implant bone formation
was found around Coll-coated screws implants after 3 mo as
compared with uncoated screws.30 In the femur condyle of goats
the amount of new bone formation was significantly higher in the
cavities of cylindric Ti implants after 5 and 12 weeks.31 In a rabbit
femur model Coll-coating of Ti implants enhanced the
osseointegration rate after 4 weeks as evaluated by histomorpho-
metry,32 push-out test33 and bone microhardness measurements.34

Coll-coating of commercially available dental implants investi-
gated in the dog mandible resulted in significantly higher BIC
after 3 and 8 weeks. In addition, analysis of cells near the bone
implant phase showed cellular and molecular profiles of
osteoblasts in a more advanced stage of differentiation.35

In contrast, Svehla et al.36 did not observe improved
osseointegration of porous Ti cylinders coated with collagen gel
implanted into the diaphysis of the sheep tibia. Different animal
models, time frames and coating techniques make it difficult to
directly compare the different studies.

However, Coll is effective in promoting cellular adhesion and
spreading through RGD sequences recognized by integrins.37 The
RGD sequences are able to interact directly with bone cells
like osteoblasts, osteoclasts and their precursor cells.38,39

Salasznyik et al.40 described strong adhesive interactions of human
mesenchymal cells on Coll-coated surfaces in vitro. Furthermore
the adhesion to Coll promotes the differentiation of these cells
into the osteogenic line. In addition Coll serves as substratum for
collagenases and matrix metalloproteinases.41,42 It is therefore able
to enhance bone resorption and bone formation resulting in
increased bone remodeling.23,41

Hydroxyapatite as bone substitute material is known to be a
bioactive and biocompatible material with excellent osteoconduc-
tive properties.43,44 Combination of HA with Coll was found to be
particularly suitable for bone replacement45,46 with good bone cell
attachment,47 biodegradation by macrophages45 and induction of
basic multicellular units in the surrounding tissue.22,46

In a rat tibia model the tissue reaction to HA combined with
Coll (HA/Coll) was evaluated (Fig. 4).41 The number of cathepsin
D-positive cells was significantly increased around HA/Coll
implants at day 6 (p , 0.01), 14 and 28 (p , 0.05). These
results suggest that a certain amount of phagocytotic cells, which
is required for a successful tissue turnover in the interface region,
appeared earlier and prevailed for a longer period around HA/Coll
implants. These findings reflect a higher bone remodeling activity
around the Coll-modified implants compared with the unmodi-
fied HA.41 Furthermore, the low number of multinucleated cells
and markedly decreased macrophage numbers after day 6 indicate
that only a short inflammatory reaction took place reflecting the
early stages of physiological bone healing. As a result of these early
events clusters of newly formed woven bone could be detected
around HA/Coll implants at day 6, but not around the implants
of pure HA (Fig. 4). Histomorphometric analysis showed an
averaged BIC of 50.8% around HA/Coll implants and 28.5%
around pure HA implants, representing a statistically significant
difference (p , 0.05).41

These findings support the hypothesis from other authors20,22,46

that the addition of collagen to HA implants can induce
ossification processes in the early stage and thus provide better
conditions for bone remodeling in the interface region.41

Chondroitin Sulfate in Ti and HA Implants

Chondroitin sulfate (CS) is an important glycosaminoglycane
found in cartilage as well as in cancellous and cortical bone.48 It is
part of proteoglycans like decorin and aggregan and consists of a

Figure 3. (A) Anteroposterior radiograph of a sheep tibia 6 weeks after surgery with the external fixator and the unloaded implants in the tibial head in
situ. (B) Extraction torque of loaded external fixator pins at 6 weeks. The difference between uncoated and coated pins was not statistically significant.
(C and D) Goldner stain of unloaded implants did not reveal detectable differences with regard to new bone formation in the cavities of the implant
(original magnification � 25). (E and F) New bone formation was seen around all coated external fixater pins in contrast to the uncoated pins (original
magnification � 25).29
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repeating disaccharide unit of D-glucuronic acid linked to
N-acetylgalactosamine. The galactosamine residues are sulfated
in positions 4 or 6. These sulfate groups as well as the carboxyl
groups were assumed to interact with mineral structures such as
hydroxyapatite in bone.49,50 Besides Coll, CS appears to be
promising as a further addition to biomaterials to enhance bone
healing by creating an artificial matrix for osteoblasts. It can
mediate the binding of bone-like cells like osteoblasts and
osteoclasts to the matrix and capture soluble molecules such as
growth factors into the matrix and at cell surfaces.10

In vitro studies have shown that the coating of Ti surfaces or
textile scaffolds with Coll/CS enhanced mesenchymal cell
adhesion, spreading and differentiation.51-53

In a standardized rat tibia model Rammelt et al.24 investigated
the effects of Coll/CS-coating on bone remodeling and bone
healing. Four days after implantation of the coated Ti pins a
reparative granulation tissue was seen around the Coll/CS-coated
implants with a high amount of infiltration of mononuclear
macrophages displaying immunoreactivity against cathepsin D. At
the same time a primitive fibrin network of mainly granulocytes,
fibroblasts and few macrophages was observed around uncoated
Ti.24 The number of TRAP-positive osteoclasts at the newly
deposited osteoid and woven bone at the implant surface was
significantly higher around Coll/CS implants compared with
Coll-coated implants or pure Ti (p , 0.05). Furthermore, the
number of osteopontin-positive cells was significantly increased
around the Coll/CS implants at this time point (p , 0.05)
indicating an early bone remodeling. After 28 d BIC was
significantly higher (p , 0.05) around Coll/CS-coated Ti pins

(89.5%) compared with pure Ti (63.9%) and Coll alone
(76.1%).24

Further investigations focused on large animal models. In a
sheep experiment under loaded conditions the number of
osteopontin-positive osteoblasts was significantly increased in
the interface around Coll/CS-coated Ti external fixation pins.29

The extraction torque was slightly higher than that of the
uncoated external fixation pins (Fig. 3). These data support
findings from other groups that have shown that proteoglycans
were able to improve cell binding and accelerate differentiation of
bone like cells in vivo.52 Around unloaded Ti screws in the tibia
head these effects were not observed, which may be explained by
the increased bone remodeling under loaded conditions according
to Wolff ’s law.54

Several other animal studies confirmed the advantages of Coll/
CS-coating. Stadlinger et al.5 showed a significantly higher BIC
on Coll/CS-coated cylindric Ti implants (40%) compared with
Coll-coating (30%) in the mandible of minipigs 6 mo after
implantation. The same group studied bone formation using
threaded dental Ti implants with different CS content in
minipigs.17 One month after implantation more mature stages
of bone formation were reached around the Coll/CS-coated
implants in comparison to control independent of the CS
amount. The significantly higher BIC after one month was
equalized after 2 mo indicating that Coll/CS-coating enhances
early bone formation.17

The addition of CS to HA/Coll appears attractive in order to
further increase the osteoconductive properties of these bone
substitute composites. The influence of cylindric CS-modified

Figure 4. (A) Lateral radiograph of a rat tibia with the inserted cylindrical HA implant (B and C) Goldner stain of the interface region 6 d after implantation
of pure HA implants (A) and HA/Coll composites (B). Several islands of newly formed woven bone are seen within the fibrous interface around HA/Coll
implants, but not around HA.41
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HA/Coll implants on the host response was examined in the rat
tibia.55 The HA/Coll implant was not designed to be absorbed by
the host tissue. Rather the tissue reaction of the implants could be
observed in the interface around the implant. At the early stages of
tissue reaction (days 4 and 7) a significantly higher number of
cathepsin D-positive and TRAP-positive cells were seen around
HA/Coll/CS implants as compared with HA/Coll implants
indicating a more rapid tissue reaction and appearance of
phagocytotic cells around HA/Coll/CS implants.56 From the
seventh day on, islands of woven bone were observed at the
interface around the CS-coated HA/Coll implants, but not
around the HA/Coll implants. On day 28 after implantation all
implants were surrounded by newly formed lamellar bone with
increased amount of BIC and higher amount of newly formed
bone around the Coll/CS-coated implants.55

These results could be further supported in a large animal
model which is more clinically relevant than a small animal
model.57 A critical midshaft defect of 3 cm was created in the tibia
and filled with HA/Coll or HA/Coll/CS cement cylinders
(Fig. 5A). Radiographic investigations of the HA/Coll implants
showed no callus reaction until the 12th week whereas an initial
callus reaction was seen around the HA/Coll/CS implants. After
3 mo newly formed woven bone was seen directly at the HA
implant coated with Coll/CS (Fig. 5C and D). Direct bone
contact at later stages of bone healing and the total amount of

newly formed bone were increased around HA/Coll/CS compared
with HA/Coll implants (Fig. 5B).

Taken together the results of the small and large animal model
indicate additional effects through the addition of CS to Coll than
Coll-coating alone. The negative surface charge of CS could be
responsible for the observed effects. The negative charged sulfate
or carboxyl groups can interact with positively charged amino acid
sequences of growth factors thus modulating their activity.38 This
might enhance the immobilization of the growth factors and other
cytokines on the implant surface50 and thus stimulate cell activity
around the implants.55

In conclusion, CS can mediate the attachment of growth
factors and cytokines to the implant surface by direct interaction
with them, which should be the subject of further investigations.

RGD on Ti and HA Implants

The RGD peptide sequence (Arg-Gly-Asp) is an ubiquitous
adhesive motif.58 In addition, it is responsible for the interaction
of cellular integrin receptors with proteins of the ECM.59

Numerous in vitro studies have shown that RGD and related
peptides are able to enhance adhesion, migration and osteoblast
gene expression.60-62 The RGD sequence is present in several
molecules of the ECM like collagen, fibronectin, osteopontin and
osteonectin and is thought to play a role in bone formation.

Figure 5. (A) Anteroposterior radiograph of the sheep tibia 12 weeks after surgery with the HA/Coll implant. No callus formation was seen around
the implant. (B) Results of histomorphometric measurements after 12 weeks. BIC as well as new bone volume were significantly higher in HA/Coll/CS
group compared with the HA/Coll group (p = 0.002). (C and D) Morphological changes of the bone-implant interface (Goldner stain, original
magnification � 20). Around HA/Coll/CS (D) implants newly formed woven bone is seen directly at the implant surface. There is still remaining fibrous
and granulation tissue in the interface around HA/Coll implants (C).57
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In the rat tibia, histomorphometric analysis of RGD-coated
Ti pins showed a significantly enhanced BIC after 4 weeks
(p , 0.05) as compared with uncoated Ti pins.24 The appearance
of cathepsin D-positive macrophages at day 4 indicated an early
bone remodeling activity around the Ti/RGD pins. TRAP-
positive osteoclasts appeared 7 d after implantation mostly at the
newly deposited osteoid and woven bone at the implant surface.
These results indicated a direct activation of macrophages,
osteoblasts and osteoclasts in the presence of a RGD sequence
at the implant surface.24 Increased bone formation in the femur of
rats could also be detected by Ferris et al.63 when Ti implants have
been coated with RGD.

A more rapid tissue reaction on HA/Coll implants coated with
phosphoserine and RGD was detected in a rat tibia model.64 The
early appearance and greater number of TRAP-positive cells
suggest an increased bone remodeling around HA/Coll implants
additionally coated with phosphoserine and RGD.64

A detrimental effect of RGD-coating was noticed by Hennessy
et al.65 They found poor cell adhesion on RGD-coated HA disks
and inhibitory effects of RGD on the amount of newly formed
bone as well as on the amount of bone directly contacting the
implant. Analysis of HA disks after short-term implantation into
tibial osteotomies in rats showed that fibronectin (FN),
vitronectin and fibrinogen adsorbed within 30 min to the surface.
FN, vitronectin and fibrinogen are the most abundant adhesion-
promoting proteins in the blood,66-68 binding integrins through
RGD-dependent mechanisms.69,70 This adsorption may explain
the inhibitory effects of FN and vitronectin on cell adhesion.
RGD and adsorbed proteins compete for binding to integrin
receptors. Binding of high amounts of integrins with RGD rather
than the native proteins weakens the integrin signaling resulting in
poor cell adhesion and thus osseointegration.65 No significant
differences in bone formation were found with HA/RGD-coated
K-wires compared with HA-coating.71 It was suggested that HA-
coating alone has already a beneficial effect on bone formation on
the surface.72-75 This is supported by studies showing that HA-
coating is associated with early adhesion of osteoblasts and a direct
deposition of bone matrix compared with uncoated implants.72,76

On the other hand, Elmengaard et al.77 found significantly
more bone around the RGD-coated implants and improved
implant fixation in a loaded as well as unloaded cancellous gap
model in the femur of dogs. The same group demonstrated
increased bone formation and a reduction in fibrous tissue fixation
on the surface of Ti alloy implants coated with RGD in a press-fit
model in the tibia of dogs after 4 weeks.78

In summary, RGD coating on Ti surfaces seems to enhance
new bone formation whereas additional modification of HA
implants does not improve BIC and new bone formation.

Further Coatings of Ti and HA Implants

Hyaluronic acid (Hya) is an unbranched and immunologically
inert glycosaminoglycan.79 It is an important component of the
extracellular matrix and is involved in regulating cell migration,
adhesion and differentiation.80 Hya with high molecular mass is
reported to be osteoinductive.22,81 In addition, Hya enhances

interactions between osteoblasts and osteoclasts in bone remodel-
ing and influences osteoclast progenitor recruitment.82,83

Implantation of Ti pins coated with Coll/sulfated Hya in
maxillary bone of minipigs did not result in enhanced BIC or
bone volume density as compared with uncoated Ti implants.84 It
is known that sulfation plays an important role in growth factor-
glycosaminoglycan interactions. Heparin, another glycosamino-
glycan, can increase bone morphogenetic protein induced
osteoblast differentiation, but desulfated heparin-derivates lose
these properties.85

In a 4-week rabbit femur model, Hya coating increased BIC,
bone ingrowth, implant mechanical fixation and bone maturation
suggesting enhanced or faster bone remodeling.86 Thereby the
influence of Hya on osseointegration was more evident in
trabecular than in cortical bone. In contrast, Hya-coated HA
implants did not increase bone ingrowth in a sheep model.87

Fibronectin, a major component of cell adhesive proteins, is
known to play a role in facilitating cell attachment, spreading and
differentiation.88-90 Differentiation of osteoblasts was enhanced on
Ti surfaces coated with a recombinant fragment of FN containing
the central cell binding domain.91

In a rat cortical bone model BIC, mechanical fixation, and
functional osseointegration were significantly improved compared
with uncoated Ti implants and implants coated with FN from
human plasma.91 However, plasma FN coating also showed
significantly higher mineralization compared with uncoated
implants.91 In a cylindrical bone defect in the femur of mice
acrylic rods coated with Ti and Ti/FN were investigated. The
coating with FN from mouse plasma induced earlier osseointe-
gration. BIC was significantly higher at day 5 after implantation
around the Ti/FN rods.92

Attachment and proliferation of osteoblasts was significantly
increased on HA disks pretreated with FN together with fetal
calf serum.93

Summary and Outlook

Coating of titanium or hydroxyapatite implants with organic
components of the extracellular matrix offers great potential to
improve new bone formation and enhance bone/implant contact
which in turn will improve healing time and implant stability.
Nevertheless the sometimes conflicting results necessitate further
investigations to individually tailor the ideal implant modifica-
tions. The increasing knowledge about the role of the ECM for
recruitment, proliferation, and differentiation of cells and
regeneration of tissue will eventually deal to the creating of an
artificial ECM on the implant that could allow a defined adjust-
ment of the required properties to support the healing process.

A potential strategy could be the sulfation of glycosaminogly-
canes to specifically address the functionalities of these ECM
components.94 To further elucidate the basic mechanisms of the
cell-matrix interactions during the early stages of bone healing in
order to specifically address them with novel implant modifica-
tions, our group has used microdialysis on a bone defect model to
detect the time-dependent course of the key mediators and
cytokines during that process.95,96
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